Trigonometrie

Trigonometrie

Trigonometrie (z řeckého trigónon, trojúhelník a metrein, měřit) je oblast goniometrie zabývající se užitím goniometrických funkcí při řešení úloh o trojúhelnících. Trigonometrie se dělí na trigonometrii rovinnou a na trigonometrii sférickou (trigonometrie útvarů na kulové ploše). Trigonometrie má základní význam při triangulaci, která se používá k měření vzdáleností mezi dvěma hvězdami, v geodézii k měření vzdálenosti dvou bodů a v satelitních navigačních systémech. V angličtině se trigonometrie a goniometrie souhrnně označuje jako trigonometry.

 

Historie trigonometrie[editovat | editovat zdroj]

Leonhard Euler, zakladatel moderní trigonometrie

První poznatky z trigonometrie lze prokázat již u Egypťanů. Podobné znalosti měli také Babyloňané a Chaldejci, od kterých převzali Řekové dnešní dělení plného úhlu na 360° a stupně na 60 minut. První práce o trigonometrii souvisely s problémem určení délky tětivy vzhledem k velikosti úhlu. První tabulky délek tětiv pocházejí od řeckého matematika Hipparcha z roku 140 př. n. l., další tabulky sepsal zhruba o 40 let později Melenaus, řecký matematik žijící v Římě. Práce starořeckých vědců vyvrcholila Ptolemaiovým dílem Megale syntaxis (Velká soustava), v níž Ptolemaios vypočítal tabulku délek tětiv kružnice, jež měla poloměr až 60 délkových jednotek a kdestředový úhel, k němuž se délky vztahovaly, postupoval po 0,5°.

Od 5. století začali pak trigonometrii budovat Indové, od kterých pochází dnešní název pro sinus, a po nich vědci Střední Asie a Arabové. Z Indů se trigonometrii nejvíce věnoval Brahmagupta (7. století), z vědců Střední Asie aArábie je pak třeba vzpomenout syrského astronoma al-Battáního.

Evropa se s trigonometrií seznámila díky západním Arabům. K rozvoji trigonometrie významně přispěl polský astronom Mikuláš Koperník, stejně tak i francouzský matematik François Viète, který představil kosinovou větu v trigonometrické podobě. Dnešní podobu trigonometrie jakožto vědu o goniometrických funkcích ve svém díle Introductio in analysin infinitorum (Úvod do analýzy) vytvořil Leonhard Euler. Poprvé zkoumal hodnoty sin x, cos x jakočísla, nikoli jako úsečky, a jako hodnoty proměnné připouštěl kladná i záporná čísla.

Trigonometrické věty a vzorce[editovat | editovat zdroj]

\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.
a^2 = b^2 + c^2 - 2 b c \cdot \cos \alpha
\frac{a-b}{a+b}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{tg}\, \frac{\alpha +\beta }{2}}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{cotg}\, \frac{\gamma }{2}}
  • Pro obsah každého trojúhelníku ABC s vnitřními úhly α, β, γ a se stranami abc platí:
S=\frac{1}{2}ab\,\sin(\gamma)=\frac{1}{2}ac\,\sin(\beta)=\frac{1}{2}bc\,\sin(\alpha)
r=\frac{a}{2\sin \alpha}=\frac{b}{2\sin \beta}=\frac{c}{2\sin \gamma}

Napsat komentář

Vaše e-mailová adresa nebude zveřejněna. Vyžadované informace jsou označeny *